
International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 332
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Advanced Compilation Techniques for Data
Distribution and Chip Multiprocessor

Amruta Salunkhe, Prof, R. D. Bharati, Dr.D.Y.Patil Institute Of Engg And Technology,Pune

Abstract— The limiting factor in the performance of chip multiprocessors is data access latency. Data access latency increases
significantly as the number of cores in non uniform architecture are increased. To moderate this effect, we use a compiler-based approach
to leverage data access locality. Multithreaded memory access patterns (MMAPs) are resolved and used by a partitioning algorithm to
choose a partition of allocated memory blocks among the forked threads in the analyzed application. This partition is used to impose data
ownership by associating the data with the core that executes the thread owning the data. Based on the partition, the communication
pattern of the application can be extracted.

We show how this data can be used in an experimental architecture to speedup applications. Compiler assisted data partitioning method
shows a 20 percent speedup over shared caching and 5 percent speedup over the closest runtime approximation. By using a
communication pattern, a comparable performance is achieved compared to a system that uses only compiler generated partition and uses
a complex centralized network configuration system at runtime.

Index Terms— Data Partitioning, Multi-Threaded Memory Access Pattern, TI Variable, Access Latency, Chip Multiprocessor,
Multithreaded.

 ——————————  ——————————

1 INTRODUCTION
Multithreaded benchmarks shows that a large portion of data

parallel applications tend to exhibit regularity in their data access
patterns. Cache architectures for the last level on-chip cache for
tiled CMPs typically fall into two classes, non-uniform cache
access (NUCA) and private access with the higher-levels typical-
ly being private. Many multithreaded applications, such as those
from the SPLASH-2 and PARSEC benchmark suites, exhibit
regular data access patterns that can be exploited at compile time.

Detecting these patterns is critical to gain an insight of how da-
ta should be distributed among multiple CMP tiles to promote the
locality of access within a tile and between tiles implied in the
program. MMAPs are primarily related to array accesses and TI-
Structures, there are other programming components affecting the
actual access
patterns. Several runtime oriented caching policies
and schemes have been proposed to distinguish certain character-
istics of data access patterns in order to achieve better perfor-
mance.

The existing system have Compiler analysis for determining
application memory access and communication behavior in sin-
gle and multiprocessor systems. Cache design to promote locality
of access and low-latency access. Interconnect design to promote
low-latency and/or high throughput communication. But that
system doesn’t involves catch-block granularity.

We suggest to use compiler to determine data partitioning im-
plied by the program. Partitioning will be communicated to
runtime system to help to determine data placement in cache to
promote the locality of access. Based on the partitioning, com-
munication pattern of the application will be determined.

The compilation methodology requires the use of several
known compiler techniques that are well understood, such as
symbolic analysis, constant propagation, expression folding, etc.

We propose to use the compiler to determine the data partitioning
implied by the program. Compiler analysis techniques to detect
data access patterns, partitions, and communication patterns for
multithreaded applications. System saves significant runtime
complexity. Achieves an 5.1 percent additional speedup through
the addition of the reconfigurable network.

2 RELATED WORK
Non uniform cache access designs solve the on-chip wire delay

problem for future large integrated caches by embedding a net-
work in the cache, NUCA designs let data migrate within the
cache, clustering the working set nearest the processor [1].

Princeton Application Repository[2] for Shared Memory
Computers (PARSEC), is a benchmark for studies of Chip-
Multiprocessors(CMPs). Earlier benchmarks for multiprocessors
focused on high performance computing applications and used a
limited number of synchronization methods. PARSE considers
upcoming applications in recognition, mining and synthesis
(RMS) and systems applications which mimic large scale multi-
threaded commercial programs[2].

Analysis of energy models for on-chip interconnection net-
works and tradeoffs in tiled chip multiprocessors design. Using
these models, investigation of the network architecture including
topology, channel width, routing strategy, and buffer size done
to analyze how it affects performance and impactarea and energy
efficiency. Performance of on-chip networks designed for tiled
chip multiprocessors implemented in an advanced VLSI process
analyzed and compare area and energy efficiencies estimated
from this models[3].

It describes an automatic parallelization system for Fortran

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 333
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

programs and also presents the results obtained with the exten-
sive experiments. The system incorporates a comprehensive and
integrated collection of analyses including dependence, privatiza-
tion and reduction recognition for both array and scalar variables,
and scalar symbolic analysis to support these[4].

2.1 Data Partitioning
Consider a parallel program for four threads. The compiler de-
tects that the program has three phases. It can be determined from
the analysis that multi-threaded access patterns of each phase as
follows.

Algorithm

Input : File F, Number of Processor P
Output: Allocated List
 Step 1: Read the file
 Step 2: Analyze the size
 Step 3: Get speed of Processor
 Step 4: Compute the Splited part
 Step 5: while (Splited JobList)
 {
 SJ; =SJList.get (i);
 Allocated to Processor P; & Create Thread
 Remove.SJ(i) from SJList();
 }
 Step 6: Execute the thread

2.2 System Overview
To achieve the data partitioning using compiler assisted pro-

gram, a reconfigurable system is designed. Fig 1. Shows a full
system overview which is organized in a two dimensional grid
where each tile contains a processor core, a private L1 instruc-
tion and data cache, a L2 cache bank, a directory bank and a net-
work interface (NI). Communication between tiles can happen
via one of the four two dimensional mesh network planes each of
which combine circuit switching and packet switching. Routers
of these planes are also given in fig 1.

 Fig.1 System Overview

3 PROGRAMMER MODELS
If array access appears N times in a m-deep nested loop, and the
lower bounds, upper bounds, and steps of loop indices for thread
x are ι1(p),… ιm(p), u1(p),… u m(p), and s1(p),… sm(p), respec-
tively. Hence, the formula to calculate access weight for R(p)

 M (Uα (p) – Lα (p))

W(R(p)) = N * Π
 K=1 Sα (p)

To estimate the nonlocal access weight W, first need to compute
the ending offset, overlap range and destiny of a region. Consider
a region Ri(x) that has m span stride pairs. Sik(p) and Tik(p) are
the Kth span stride within the region and Oi(p) are the region’s
initial offset. Define the corresponding ending offset Ei(p) as the
last element in the region.

 m

 Ei(p) = Oi(p) + Σ Sik(p).
 K=1

Thus, the overlap range of Ri(p) and R*(q) is defined as

 ∆ = min(Ei(p), E*(q)) – max(Oi(p), O*(q)))

Where O*(y), E*(y) are the initial offset and ending offset re-
spectively, of R*(y)

The region R*(q)’s density D*(q) is the access weight of region
relative to the range relative to the range of that region. Thus,
D*(q) is defined as

 1
D*(q) = * W(R*(q))
 E*(q) - O*(q)

We thus approximate nonlocal access weight of tile p to data in
R*(q) (equivalent to amount of communication) in phase i as
follows

 ∆
 W(p,q,i) = * D*(q) * W(Ri(p))
 Ei(p) - Oi(p)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 334
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Number of Split NS = 4;

Number of Processor NP = 4;

Speed of Processor PS

Size of Data SD = 1000 MI (Million instruction) or 100 kb

 Split Part for Particular Processor =

Processor Speed

P1 10

P2 5

P3 10

P4 15

 = 100/(10+5+10+15)

 = 100/40 = 2.5

Processor Stored Split Data

P1 25

P2 12.5

P3 25

P4 37.5

 4 CONCLUSION
In this project, we have developed compiler analysis techniques
to detect data access patterns, partitions, and communication pat-
terns for multithreaded applications. The data discovered is then
used to assign ownership to subpages, and this data is then used
by the CAP caching scheme for data distribution. The CAP is
used to compute the communication pattern which can be used as
a method to program a configurable interconnect (CAC).
We evaluated the proposed method on various benchmarks from
the SPLASH-2 and PARSEC benchmark suites and compared the
results with other relevant schemes. The experimental results
shows that the compiler-assisted caching scheme inherits the ca-
pacity benefit of distributed shared caches while reducing the
memory access latency.

5 RESULT
Graph showing comparison between existing and proposed sys-
tem. Results are showing decrease in size with the proposed sys-
tem while also showing around 20% decrease in data latency as
well.

 Fig 2. Comparison between existing &
 proposed system

Graph showing comparison between existing and proposed sys-
tem in terms of speed. New system is showing increase in speed
of about 20% with the new system.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 335
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 Fig 3. Speedup Evaluation

REFERENCES
[1] Yong Li, Ahmed Abousamra, Rami Melhem, and Alex K.

Jones, "Compiler-Assisted Data Distribution and Network
Configuration for Chip Multiprocessors" IEEE Trans. Paral-
lel and Distributed Systems VOL, 23 NO.11,NOV 2012.

[2] C. Bienia, S. Kumar, J.P. Singh, and K. Li, “The Parsec
Benchmark Suite: Characterization and Architectural Impli-
cations,” Technical Report TR-811-08, Princeton Univ., Jan.
2008

[3] J.D. Balfour and W.J. Dally, “Design Tradeoffs for Tiled cmp
On-Chip Networks,” Proc. 20th Ann. Int’l Conf. Supercom-
puting (ICS),pp. 187-198, 2006.

[4] Z. Li and P. Yew, “Efficient Interprocedural Analysis for
Program Parallelization and Restructuring,” Proc. SIGPLAN
Symp. Parallel Programming: Experience with Applications,
Languages and Systems, July 1988.

[5] B. Creusillet and F. Irigoin, “Exact versus Approximate Ar-
ray Region Analyses,” Proc. Ninth Int’l Workshop Language
and Compilers for Parallel Computing, Aug. 1996.

[6] Y. Paek, E.Z.A. Navarro, J. Hoeflinger, and D. Padua, “An
Advanced Compiler Framework for Noncache-coherent
Multiprocessors,” IEEE Trans. Parallel and Distributed Sys-
tems, vol. 13, no. 3, pp. 241-259, Mar. 2002.

[7] C. Kim, D. Burger, and S.W. Keckler, “Nonuniform Cache
Architectures for Wire-Delay Dominated On-Chip Caches,”
IEEE Micro, vol. 23, no. 6, pp. 99-107, Nov./Dec. 2003.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related work
	2.1 Data Partitioning
	2.2 System Overview

	3 Programmer models
	4 Conclusion
	5 Result
	References

